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Abstract 

By analogy to the magnetic monopole first proposed by Dirac (1931), a generalised 
magnetic monopole, being a source of the Yang-Mills field, is constructed. The gauge 
invariance and the rotational symmetry lead in a natural way to the quantisation not 
only of the electric charge but also of the hypercharge number Y. It is shown that the 
generalised magnetic charges are not arbitrary, and some restrictions on their values are 
deduced. 

° 

The problem of  the existence of  the magnetic monopole, first formulated 
by Dirac (1931), has since been investigated by many authors. One of  the 
main results of  the monopole theory, namely the quantisation o f  the electric 
charge as a direct consequence o f  the existence o f  at least one magnetic 
monopole in nature, can be deduced by quite simple considerations concerning 
the rotational invariance o f  the magnetic field generated by this monopole 
(Schwinger, 1966). One then obtains Schwinger's condition 

e g=  0 , + - 1 , + 2 , . . .  (1.1) 

rather than Dirac's, with 

eg = 0,-+½,-+ 1 . . . .  (1.1a) 

Here e is the electric charge and g is the magnetic charge of  the monopole;  
we make use of  the natural system of  units in which h = c = t. 

Let us consider briefly the simplest method of  obtaining relation (1.1), 
given by Peres in (1968). 
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Consider a homogeneous, static magnetic field B, it is obviously translation- 
invafiant. The gauge-invariant translation generators should have the following 
form: 

P / =  pj  - eAj ,  j, k . . . .  = 1, 2, 3 (1.2) 

with pi = - i~ / ~x i. 
But these generators do not obey the canonical commutation relations; as 

a matter of fact, we have 

[P], P#] = - iee f laBt  (1.3) 

It is easy to see that the right generators are 

Pj = P/  - ½ee jkmxkBm (1.4) 

These generators are manifestly gauge-invariant and verify 

[ej, ek]  =0 (1.5) 

Consider now a spherically symmetric magnetic field generated by a 
magnetic point charge g: 

xk. 
Bk = g ~'5 (1.6) 

The classical gauge-invariant generators of the three-dimensional rotations 
should be 

J~ = eklmXl(Pm -- eArn) (1.7) 

but again, instead of the right commutation relations of the 0(3)  group they 
verify 

[Jk, J[] = ieklrn(Jm -- egnm) (1.8) 

where nm = Xm/r. 

In order to obtain the right commutation relations one should introduce 
the modified generators: 

ark = Jk + egnk (1.9) 

These generators are gauge-invariant and verify 

[Jk, Jm] = i e k m n J ,  (1.10) 

Multiplying (1.9) by n k we obtain 

eg = nkJk  (1.1 1) 

and the eigenvalues of this expression in a representation in which n andJ  
are diagonal become 

e g = 0 , + l , + 2 , . . .  (2.1) 
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2. 

Consider now a gauge field generated by some compact, semi-simple Lie 
group G, dim G = iV. The equations of this field are: 

aUF~v + C~,cAbUFfiv = 0 (2.1) 

and 

aufe~v + C~,c.AOla~'~v = 0 (2.1a) 

/~ ,v=0,  1 , 2 , 3 ; a , b  . . . .  = 1 , 2 , . . . N .  Here 

F~w = 8uAv a avA~  '* b c (2.2) a - + C~eA u Av 

P~z, = ½euv~xFax (2.3) 

and C~,c are the structure constants of the Lie group G. 
Introducing the 'electric' and 'magnetic' components of the field by 

Ezff = F~k, Bk a = ½emmF~m = F~k (2.4) 

and choosing the gauge in which 

ao  a = O, aiAi a = 0 (2.5) 

we can rewrite equations (2.1) and (2.1a) in the following form: 

~t ..... rot//a + Cge(~b A ~c) (2.6) 

"+a 
aB % 

........... rot E + Cge(.4 b A ~c)  (2.6a) 
at 

We see then, that the divergences of both ~-a and ~a are non-null. Being 
non-linear, the gauge field behaves as a source of current itself and, what is 
most important, it does create a current corresponding to both the 'electric' 
and 'magnetic' components. Both these currents are conserved, of course. 
Returning to the four-dimensional formalism and taking the divergence of 
(2.1) and (2.1a), we obtain 

av(CgeAbUFgv) = O, av(CgeAbUFav ) = 0 (2.7) 

Having this in mind, one is naturally tempted to introduce the external 
sources for both components, i.e. 

a l a l g a  - r a t . , a  . , t b l a ~ , c  
* tZV - -  a V  - -  t " b c X ~ t  r l ~ V  

= J d  - (2.8) 

These external currents are not conserved by themselves, but only with the 
field-produced ones: 

- Cg~A F~v)  - O, - C g c A  F~,)  = 0 (2.9) 



180 RICHARD KERNER 

Let us now generalise the considerations concerning the translational and 
rotational invariance mentioned in Section I. Consider a homogeneous, trans- 
lation-invariant gauge field of the type 

~ = 0, ~a = Cons/. (2.10) 

The gauge-invariant generator of the translations is 

, A a P ~ = P k - a a  k (2.11) 

with Qa now being operators obeying the Lie algebra commutation relations: 

[Qa, ab  ] = Ccbac (2.12) 

Again, the generators P[ do not obey the right commutation rules: 

[P[,P]] = - i e i j k a a B ~  (2.13) 

whereas the right expression is: 

Pi = P~ - ½ ei]tcxiaaB ~ (2.14) 

Of course, the Qa's do not commute, but in this particular case bothAk a and 
Bx a are factorisable, i.e. of the form 

A ~  = f a A k  (2.15) 

fa being constant c-numbers, therefore vanishing in any antisymmetric 
combination. 

The same is valid for the case of the generalised magnetic monopole, whose 
field is of the form 

a ~  _a xk 
=g ~-  (2.16) 

There exists another exact solution of the Yang-Mills field equations, in the 
particular case of the SU(2) gauge group, displaying the essential properties 
of a magnetic monopole. This solution, which is of the form 

eaiiX] B a -  xaxi  (2.17) 
A ~  =0,  A i  a= r 2 , i - -  r 4 

has been discussed by the author (Kerner, 1970) and by Joseph (1972). This 
solution is not spherically symmetric and cannot justify the analogy with the 
electric charge quantisafion described above. Its symmetry properties are 
discussed in Joseph (1972). 

Here we will suppose the existence of the monopole described by solution 
(2.16), corresponding to any compact and semi-simple gauge group, of 
dimension higher than 3. Continuing the analogy, we have to introduce the 
gauge-invariant rotation generators 

J~ = eklm Xt(Pm -- QaA~n) (2.18) 

and we see again 

[J[, J~] = iei~(J] - Qagani) (2.19) 
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But if we put 

Jk = J~ + Qagank (2.20) 

we now obtain the correct commutation relations 

[Ji, Jk]  = ie ik IJ t  (2.21) 
Here also the result is not altered in spite of the fact that the Qa's do not 
commute, because our field is factorisable. 

Then, in analogy with (1.1), we have 

Qag a = nkar k (2.22) 

Relation (2.22) tells us that in the representation in which the operator 
ngJk is diagonal, the operator Qag a is diagonal too. On the other hand we 
know that this can generally be achieved only if the coefficients ga are 
chosen in such a way that the linear combination Qag a belongs to the Cartan 
subalgebra of the Lie algebra of G. The eigenvalues of the operator Qag a are 
then equal by virtue of (2.22) to 0, +1, -+2 , . . . .  

. 

The interpretation of this result depends of course on the choice of the 
gauge group G, and puts restrictions on the choice of the components of the 
generalised magnetic monopole. Let us take for example the unitary group 
SU(3), whose Cartan subalgebra is of dimension 2. Let us choose the basis of 
this subalgebra in the usual way, namely 

Y = ~/(½)~8, r3 = ½)~3 (3.1) 

Y meaning the hypercharge, T 3 the third component of the isospin. The 
electric charge is given by the formula 

Qe! = T3 + ½ Y (3.2) 

Let us call the corresponding components of the generalised monopole g y  
andgT~. Then, because the operator T 3 takes on the values 0, i , . . . ,  the 
following conclusions are obvious concerning the possible values o f g y  and 
gT~: 

Could exist Cannot exist 

1. g r =  t , g T  =O 
2. -- g y  = O, gT~ = 1 
3. g r  = ½,gTa = 1 
4. -- g r  = 1,gT~ = 1 

The first generalised monopole is therefore responsible for the quantisation 
of the hypercharge, the third one yields the quantisation of the electric charge; 
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a monopole producing the effect of the quantisation of both these numbers 
at the same time does not exist. 

To conclude, let us remark that it is easy to see that were there generalised 
dyons in nature (i.e. particles being at the same time 'electric' and 'magnetic' 
monopoles, in the sense of  (2.4)), the above restrictions are valid for the 
magnetic monopote coefficients ga, whereas the 'electric'-component coefficients 
qa can be arbitrary, not necessarily in the Cartan subalgebra. 
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